Monday, October 26, 2009

Fjordman: A History of Geology and Planetary Science — Part 1

Fjordman’s latest essay, the first part of “A History of Geology and Planetary Science”, has been published at the Brussels Journal. Some excerpts are below:

The German scholar Georgius Agricola (1494-1555) was a pioneer in mineralogy. He got a degree from the University of Leipzig and studied medicine in Italy. On his return to Saxony in 1526 he developed a life-long interest in mining and spent some time in Bohemia, the richest metal mining district in Europe. His work De Re Metallica, published posthumously in 1556, was a comprehensive summary of all aspects of mining and metal production then known. His work was highly regarded by contemporaries and has stood the test of time well.

Nicolas Steno, or Niels Stensen (1638-1686) from Copenhagen, Denmark, studied medicine and moved to Italy in 1665. In 1666, two fishermen caught a huge shark which Steno dissected. While examining its teeth he was struck by their resemblance to stony objects that were found in certain rocks. He argued that these objects had come from once-living sharks and come to be buried in mud or sand that was now dry land. His English contemporaries Robert Hooke and John Ray, too, argued that fossils were the geologically preserved remains of once-living organisms. Steno is also famous for his law of superposition. In 1669 he concluded that layers of rock (strata) are arranged in a time sequence with the oldest on the bottom and the youngest on the top, unless later processes have disturbed this arrangement.

The French naturalist Jean-Étienne Guettard (1715-1786) was the first person to recognize the volcanic nature of the Auvergne region in central France. In addition, he prepared early geological maps and identified heat as the causative factor of change in the Earth’s landforms. Nicolas Desmarest (1725-1815) in the 1760s studied the Auvergne region and found large basalt deposits and traces of flows of lava (magma, molten rock) from nearby now-extinct volcanoes. The German naturalist and explorer Alexander von Humboldt carried our major studies of volcanoes in the first part of the nineteenth century.

The word “geology” as a term for the study of the Earth was popularized in the late eighteenth century by the Swiss (Genevan) naturalists Horace-Bénédict de Saussure (1740-1799), the aristocrat and scholar who is famous for his voyages in the Alps and often considered the founder of alpinism, and Jean-André Deluc (1727-1817). Deluc was the son of a clockmaker and spent years climbing the Alps with his brother. He made accurate instruments to measure the height of mountains and in 1773 sought a place in England. He was elected a fellow of the Royal Society in London on the strength of his barometry and instrumentation skills.
- - - - - - - - -
The German scholar Abraham Gottlob Werner (1749-1817) studied law at the University of Leipzig and later got a teaching appointment at the Mining Academy of Freiberg in Saxony, where he stayed for many years. As a talented mineralogist he worked up simple descriptive standards of classification and discovered eight new minerals, but mineralogy gradually diminished from the overarching category for the study of the Earth to a mere subdiscipline. While sometimes wrong, Werner was an influential geologist and the first to work out a comprehensive theory for the history of the Earth’s formation. He believed that all rock was once sediment or precipitate in a universal ocean, a view which became known as Neptunism.

James Hutton (1726-1797) was the leading representative of the rival Plutonist theory. He was born and educated in Edinburgh, Scotland, during what has become known as the Scottish Enlightenment. He was a Newtonian in natural philosophy and counted among his friends the chemist Joseph Black, the economist Adam Smith and the inventor James Watt. Hutton proposed the uniformitarian view of geological history where all strata could be accounted for in terms of geological forces operating over very long periods of time, such as the slow erosion of rocks. His ideas were popularized by John Playfair (1748-1819) of the University of Edinburgh and picked up by the young Scottish geologist Charles Lyell (1797-1875).

Charles Lyell became fascinated with geology and took several field trips to Continental Europe. Sicily with the active stratovolcano Mount Etna in particular impressed him. As a member of the Geological Society he took part in lively debates and supported the uniformitarian theory. Contrary to catastrophism it indicated the past to have been an uninterrupted period of erosion, sediment deposition, volcanic action, earthquakes etc. These gradual processes, still going on today, could account for great changes when given enough time, which meant that the Earth had to be many millions of years old. Lyell’s Principles of Geology, first published in 1830, was very successful and accessible to a wider audience, something which Hutton’s work never had been. It went through many editions and brought the author a considerable income, which he used to travel and expand his ideas. Lyell greatly influenced a number of men of science, including the young Charles Darwin. Modern geology can be said to have been born with Charles Lyell’s extension of James Hutton’s theories.

The principles of stratigraphy, the study of the Earth’s strata or layers of sedimentary rock, had been created by Nicolas Steno in the seventeenth century and were rapidly extended between 1810 and 1840. Over the next century, geologists filled in the details of the stratigraphic column with ever-greater precision. By the turn of the nineteenth century, it was generally accepted among Western European scholars that fossils could be used to identify and correlate strata. The great naturalist Georges Cuvier (1769-1832), widely considered the founder of paleontology, together with fellow French scholar Alexandre Brongniart (1770-1847) produced a pioneering geological map of the Paris region in 1812. Brongniart had studied chemistry under the brilliant chemist Antoine Lavoisier. The fruitful collaboration between these two men established a scientific approach to stratigraphy and demonstrated that particular geological strata could be recognized by the fossils found within them.

The English surveyor, canal engineer and geologist William Smith (1769-1839) came from a family of small farmers. He received little formal education, but from an early age took an interest in exploring fossils. Based on stratigraphic investigations from canals and quarries he produced a complete geologic map of England and Wales in 1815, the first nationwide geological map. Partly due to his humble origins and limited education his great contributions were overlooked at first by the scientific community, and Smith suffered from severe financial difficulties. Not until the later part of his life was his careful work fully appreciated.

Although the marriage between geology and mining took a long time to yield practical results, the frequent claims that dynamic Britain during the Industrial Revolution was exhausting its coal supplies turned out to be false alarms. State-sponsored geological surveys were undertaken throughout Europe and North America after the mid-nineteenth century. This research would greatly benefit the mining industry as well as the emerging petroleum industry. Many geologists in the twentieth century found work in the oil industry, which joined geological surveys and mining as the main sources of non-academic employment.

Roderick Murchison (1792-1871) was born into a wealthy Scottish Highland family. He spent years in the army and became a very active member of the Geological Society of London, collaborating with Charles Lyell and the Englishman Adam Sedgwick (1785-1873). Murchison’s great work The Silurian System in 1839 established the Silurian geological time period of the Paleozoic Era, followed a year later by the Devonian while collaborating with Sedgwick. Murchison’s travels through Russia and Scandinavia after 1840 resulted in the establishment of the Permian period, which ended 250 million years ago with the greatest mass extinction of life on Earth, which wiped out perhaps 90% of all then-existing species.

Adam Sedgwick taught geology at the University of Cambridge, where Charles Darwin was one of his students. He proposed the Cambrian period, the first part of the Paleozoic, lasting from roughly 540 million to 490 million years ago. Judging from the fossil record this was an age of rapid development of complex life-forms which is called the Cambrian explosion.

Gideon Mantell (1790-1852) was an influential English paleontologist. In 1822 his wife noticed an object which he recognized as a fossil tooth but was unable to match to any known creature. The respected scholar Georges Cuvier in Paris in an uncharacteristic error suggested that the remains were from a rhinoceros. In London, Mantell was shown the skeleton of an iguana with teeth almost identical to the ancient teeth that he had just found, though much smaller. Mantell realized that he had discovered the remains of an extinct giant reptile which he called Iguanodon, making it one of the first dinosaurs to be formally named. Also in England, Mary Anning (1799-1847) was an early fossil collector who produced many remarkable finds. Perhaps the most important one was her discovery of the first plesiosaur.

The English paleontologist Richard Owen (1804-1892) coined the term “dinosaur” in 1842. The name means “terrible lizard” and is not very scientifically accurate, but it stuck. Owen was a quarrelsome man who claimed the discovery of the Iguanodon for himself when it had been done by Gideon Mantell, yet according to Bill Bryson in A Short History of Nearly Everything, he also contributed to the development of modern museums: “Owen’s plan was to welcome everyone, even to the point of encouraging working men to visit in the evening, and to devote most of the museum’s space to public displays. He even proposed, very radically, to put informative labels on each display so that people could appreciate what they were viewing. In this, somewhat unexpectedly, he was opposed by T. H. Huxley, who believed that museums should be primarily research institutions. By making the Natural History Museum an institution for everyone, Owen transformed our expectations of what museums are for.”

The Scottish geologist James Hall (1761-1832), a friend of James Hutton, founded experimental geology by artificially producing various rock types in the laboratory. He carried out dangerous experiments with limestone heated under pressure and lived to report that it did indeed consolidate under sufficient pressure. In the twentieth century Pentti Eskola (1883-1964), a professor of geology and mineralogy in Helsinki, Finland, applied chemical methods to the study of minerals and metamorphic facies (groups of mineral compositions in metamorphic rocks), thereby laying the foundations of studies in metamorphic petrology.

There are three main rock types: Igneous rocks are formed from the solidification of molten rock (magma). Intrusive igneous rocks such as diorite, gabbro and granite solidify below the Earth’s surface while extrusive igneous rocks such as basalt, obsidian and pumice solidify on or above the surface. Sedimentary rocks are formed by the accumulation of sediments. Some such as conglomerate and sandstone are formed from mechanical weathering debris. Organic sedimentary rocks such as coal form from the accumulation of plant or animal debris. Metamorphic rocks have been modified by heat, pressure and chemical processes, usually while buried deep below Earth’s surface. This has altered the mineralogy, texture and chemical composition of the rocks. Examples of this would be marble produced from the metamorphism of limestone or quartzite from the metamorphism of sandstone with quartz.

The nebular hypothesis was first proposed in 1734 by the Swedish philosopher and theologian Emanuel Swedenborg (1688-1772), who was born in Stockholm and studied at Uppsala University. He wrote on mathematics, chemistry, physics, mineralogy and astronomy and made a sketch of a glider-type aircraft. The German Enlightenment philosopher Immanuel Kant developed this theory further in 1755, and the French astronomer Pierre-Simon Laplace also advanced a nebular hypothesis in 1796. Laplace suggested that our Solar System was created from the cooling and condensation of a large and hot rotating “nebula,” a gassy cloud of particles and dust. This idea strongly influenced scientists in the nineteenth century, and central elements of it have survived to this day. For a long time, geologists preferred the hypothesis that the Earth had cooled and contracted. The work on rates of cooling made by the brilliant French mathematical physicist Joseph Fourier seemed to support this model.

Read the rest at the Brussels Journal.


Fjordman said...

Thank you for posting. This is the first of three parts which will be concluded this week. The second part will be published here, and the third part maybe at Atlas Shrugs. This is part of my history of European accomplishments, from Champagne to calculus. I will deal with the evolution from geology to Earth science and finally planetary science, when scholars began to study other planetary bodies, too.

unadosisdesoma said...

Greetings, this is my first post here, i must say that i read this blog daily with a lot of attention.
I´d like to introduce you to a remarcable man who lived in mid XVIth century Spain, whose name was Jeronimo de Ayaz. He, besides of his duties as the Kingdom´s Mining Administrator, filled his time as a painter, musician, cosmograph and, the main thing: inventor. He had more than 48 patents, including a steam-powered water pump in 1606, a submarine, and an underwater suit.
I think it´s worth having a look.

I hope that this little post had scratched your curiosity for this man a little ;).
Take care.
(sorry for my bad english)